Entropy, Randomization, Derandomization, and Discrepancy
نویسنده
چکیده
The star discrepancy is a measure of how uniformly distributed a finite point set is in the d-dimensional unit cube. It is related to high-dimensional numerical integration of certain function classes as expressed by the Koksma-Hlawka inequality. A sharp version of this inequality states that the worst-case error of approximating the integral of functions from the unit ball of some Sobolev space by an equal-weight cubature is exactly the star discrepancy of the set of sample points. In many applications, as, e.g., in physics, quantum chemistry or finance, it is essential to approximate high-dimensional integrals. Thus with regard to the KoksmaHlawka inequality the following three questions are very important: (i) What are good bounds with explicitly given dependence on the dimension d for the smallest possible discrepancy of any n-point set for moderate n? (ii) How can we construct point sets efficiently that satisfy such bounds? (iii) How can we calculate the discrepancy of given point sets efficiently? We want to discuss these questions and survey and explain some approaches to tackle them relying on metric entropy, randomization, and derandomization.
منابع مشابه
Randomization, Derandomization and Antirandomization: Three Games
Spencer, J., Randomization, derandomization and antirandomization: three games. Theoretical Computer Science 131 (1994) 415-429. Three games are given between two players, Paul and Carole, with a common theme. In each round Paul does a split and Carole chooses. Random play by Carole allows a bound for the game value. Through derandomization this becomes a deterministic strategy for Carole minim...
متن کاملDeterministic Algorithms for Submodular Maximization Problems
Randomization is a fundamental tool used in many theoretical and practical areas of computer science. We study here the role of randomization in the area of submodular function maximization. In this area most algorithms are randomized, and in almost all cases the approximation ratios obtained by current randomized algorithms are superior to the best results obtained by known deterministic algor...
متن کاملDerandomization and Circuit Lower Bounds
1 Introduction Primality testing is the following problem: Given a number n in binary, decide whether n is prime. In 1977, Solovay and Strassen [SS77] proposed a new type of algorithm for testing whether a given number is a prime, the celebrated randomized Solovay-Strassen primality test. This test and similar ones proved to be very useful. This fact changed the common notion of " feasible comp...
متن کاملNotes on Complexity Theory Last updated : November , 2011 Lecture 25
Randomization provides unconditional benefits in many settings; examples include cryptography (where random keys are used to provide protection against an adversary) and distributed computing (where randomness can be used as a means to break symmetry between parties). Randomness also appears to help in algorithm design. But is it possible that, from a complexity-theoretic perspective, randomnes...
متن کامل